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Abstract
A virulent phage, named vB_EcoS_XY3, was isolated from hospital wastewater in Xiangyang, China. Its morphological 
characteristics, growth parameters, adsorption rate, and pH and temperature stability were determined. Phage vB_EcoS_XY3 
was found to be able to infect Escherichia coli laboratory strains and also some multidrug-resistant E. coli strains. Its com-
plete genome consists of 51,345 base pairs of double-stranded DNA with an average GC content of 55.24% and 85 putative 
protein-coding genes. Forty-four genes were annotated with known functions. These results will not only provide further 
insights into E. coli phages but also have implications for the development of potential biocontrol agents.

Escherichia coli is an opportunistic bacterial pathogen that 
causes a wide range of nosocomial infections. Under physi-
ological conditions, Escherichia coli colonizes the gastro-
intestinal tract of humans [1], but it becomes pathogenic 
in patients when it ends up outside the gut – in wounds or 
in normally sterile fluids such as urine and blood, causing 
diseases such as urinary tract infections (UTIs) and sepsis 
[2–4]. The emergence of E. coli strains that are resistant to 
the most commonly used antimicrobials has often made it 
difficult to treat and eliminate infections. This poses a sig-
nificant threat to public health and results in high morbidity, 
mortality, and financial costs [5, 6]. Bacteriophages (phages) 
have attracted attention as a means of controlling bacterial 
infections, especially those involving multidrug-resistant 

bacteria [7]. In this study, phage vB_EcoS_XY3 was shown 
to be able to kill some multidrug-resistant E. coli strains, 
strongly suggesting that it could be used as a component of 
phage cocktails to treat multidrug-resistant E. coli.

Phage isolation

A phage named vB_EcoS_XY3 was isolated from urban 
sewage samples near a hospital (32°05′N, 112°10′E) in 
Xiangyang, China, using E. coli K-12 MG1655 as the indi-
cator strain, and the double-layer agar method was used to 
propagate this phage [8]. A crude phage suspension was 
concentrated with 10% polyethylene glycol 8000 and 1 M 
NaCl [9]. Sucrose density centrifugation was used for further 
purification. Finally, the purified phage was dialyzed in SM 
buffer (10 mM NaCl, 10 mM MgCl2, 50 mM Tris–HCl, pH 
8.0) at 4 °C.

The host range of the phage was determined using a 
double-layer agar plate test. The efficiency of plating (EOP) 
was used to determine the lytic activity of vB_EcoS_XY3 
and its ability to infect different bacteria. Briefly, dilutions 
of phage suspensions and 100 μL of the log-phase test strain 
were mixed with 4 ml of LB medium with 0.7% agar and 
then poured onto bottom agar and left to incubate at 37 °C 
for 24 h. The EOP value was computed as the ratio of the 
PFU/ml on the test host to the PFU/ml on the natural host. 
Each strain was tested three times.
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Stability of the phage

For the thermal stability assay, the phage was incubated in a 
water bath at 4 °C, 25 °C, 37 °C, 50 °C, 60 °C, and 70 °C for 
60 min, and the titer was determined. To determine the stabil-
ity of vB_EcoS_XY3 at different pH values, the LB medium 
was adjusted to pH 2-13. After incubation for 60 min, the 
phage titer was determined. The double-layer agar method was 
used to determine the phage activity. The final results were 
expressed as the percentage of plaque-forming units remaining 
after treatment.

Efficiency of bacteriophage adsorption 
and one‑step growth curve

A bacteriophage lysate was added to exponentially grow-
ing bacteria at an MOI (multiplicity of infection) of 0.1 (the 
optimal MOI, data not shown). During the incubation, sam-
ples were collected at an interval of 1 min and centrifuged 
at 12,000 g for 1 min to remove the cells. The supernatants 
were titrated immediately. The time when the phage lysate 
was added to the bacterial host strain was considered time 
zero, and the amount of unadsorbed phage was considered to 
be 100%. Other values were calculated compared to this value. 
A one-step growth curve assay was performed as described 
previously [10]. Briefly, an adsorption tube containing 0.1 ml 
of the phage lysate (4 × 106 PFU/ml) and 0.9 ml of host culture 
(2 × 108 CFU/ml) were mixed and then diluted to inhibit a suc-
cessive infection of bacteria. Phage titers were measured by 
the double-layer agar method at 25, 30, 40, 50, 60, 70, 80 and 
90 min. Each experiment was repeated three times.

Phage DNA purification and sequencing

The DNA of vB_EcoS_XY3 was extracted by using the phe-
nol-chloroform method as described previously [11], and the 
pellet was resuspended into 50 μl of TE buffer (10 mM Tris-
HCl, 1 mM EDTA, pH 8) and stored at − 20 °C. Genomic 
DNA was sequenced using an MGISEQ500 sequencer pro-
vided by the Beijing Genomics Institute (BGI) with an insert 
size of 350, in paired-end mode. The quality control of raw 
sequence data was performed using NGS QC Toolkit (version 
v2.3.3) [12]. Genome assembly was performed using SPAdes 
(version 3.13.1) [13].

Genome analysis

The genes encoding the putative tRNA and rRNA were 
detected using tRNAscan-SE-1.23 (http://lowel​ab.ucsc.
edu/tRNAs​can-SE/) [14] and RNAmmer 1.2 (http://www.
cbs.dtu.dk/servi​ces/RNAmm​er) [15]. RAST (http://rast.

nmpdr​.org/) was used to predict putative coding sequences. 
The average nucleotide identity (ANI) was calculated 
using OrthoANI based on the genome sequence [16]. 
In order to compare the sequence similarity of the two 
phage genomes with each other and with other homolo-
gous phage genomes, BLASTn and Clustal Omega analy-
sis were performed [17]. BLASTp was used to annotate 
the functions of the ORFs and identify putative homologs 
that share similarities with the predicted phage proteins. 
Phage genome annotation was visualized using CGview 
[18]. Easyfig was used to visualize the comparison of the 
genomes of the phages vB_EcoS_XY3 and tunus [19]. 
Using BLASTp analysis, homologous major capsid pro-
tein sequences and terminase large subunit sequences of 
phages of the subfamily Tempevirinae were identified and 
collected from the GenBank database. Multiple sequence 
alignments of the major capsid protein (ORF34) and termi-
nase large subunits (ORF28) were made using a ClustalW 
[20]. A phylogenetic tree was constructed by the neigh-
bor-joining method in MEGA7 based on 1,000 bootstrap 
replicates [21].

On E. coli strain MG1655, phage vB_EcoS_XY3 formed 
clear round plaques that were about 3  mm in diameter 
(Fig. 1A). Morphological characteristics revealed by TEM 
observation indicated that vB_EcoS_XY3 consists of an 
isometric polyhedral head (61 nm in diameter, n = 3) and 
a noncontractile tail (179 nm in diameter, n = 3) (Fig. 1B). 
Five laboratory E. coli strains (K-12, Top10, DH5α, JM109 
and BL21) and 24 clinical pathogenic E. coli strains were 
used for host determination. The results revealed that vB_
EcoS_XY3 could infect 15 of the E. coli strains, including 
four laboratory strains and 11 multidrug-resistant strains, but 
the EOP values were quite different (Table S1).

The thermal and pH stability of the phage was then ana-
lyzed. The phage showed high tolerance to increased temper-
atures. There was no significant decrease in phage activity 
after a 60-min incubation at 50 °C, and even after a 60-min 
incubation at 60 °C, more than 50% of the phage remained 
viable (Fig. S1A). The phage lost its infectivity after incu-
bation at 70 °C for 60 min. The phage also showed high 
resistance against a wide range of pH treatments (Fig. S1B), 
and it was stable when incubated at pH 4, as well as at pH 
10. After incubating the phage at pH 12, it lost all infectiv-
ity. Phage vB_EcoS_XY3 adsorbs rapidly onto E. coli cells, 
with 40% of the phage particles already adsorbed within 
5 min after mixing the phage lysate with the bacterial culture 
(Fig. S2A), and after 6 min, more than 90% of the phage 
particles had already adsorbed onto the cells. Particle for-
mation in the cell was also found to be extremely rapid, as 
seen in the one-step growth curve shown in Fig. S2B. The 
latent period was approximately 25 min, and the burst size, 
which was determined based on the final concentration of 
the phage and the concentration of phage in the adsorption 
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tube, was about 750 PFU/ml, indicating rapid and efficient 
lytic development of the phage after absorbing to the host.

Genome sequencing revealed that the vB_EcoS_XY3 
genome consists of 51,345 bp with a GC content of 55.24%. 
The vB_EcoS_XY3 genome was predicted to contain 85 
open reading frames (ORFs), including 44 (51.8%) with 
known functions (Fig. S3). No tRNA or rRNA-encoding 
genes were detected. As shown in Fig. S3 and Table S2, 
the 44 predicted functional proteins were categorized into 
five functional groups: DNA replication/modification, host 
lysis, structural proteins, additional functions, and hypo-
thetical proteins. Four genes were found to encode proteins 
involved in methylation, including methyltransferase type 11 
(ORF19), DNA adenine methyltransferase (ORF63), DNA-
cytosine methylase (ORF76), and putative cytosine DNA 
methylase (ORF77). ORF63 contains a Dam superfamily 
domain with a recognition site of GATC. ORF76 contains a 
Cyt_C5_DNA_methylase superfamily domain with a recog-
nition site of CCWGG. Resistance systems in the host such 
as the R-M system can be overcome and the effectiveness 
of infection can be prolonged with the help of methylases 
encoded by the phage [22]. Several R-M sites encoded by 
E. coli MG1655 correspond to the predicted recognition 
site GATC of ORF63 and CCWGG of ORF76 in the phage 
genome, revealing the potential to overcome the host R-M 
system.

The genome sequence of vB_EcoS_XY3 is highly 
similar to that of E. coli phage tunus (GenBank no. 
MN850638), and as determined by Clustal Omega anal-
ysis, their genomes share 97.72% identity. A genome 
sequence comparison of vB_EcoS_XY3 and tunus is 

shown in Fig. 2. Phage tunus contains 84 ORFs, which is 
one less than vB_EcoS_XY3. Eighty-one ORFs (96.4%) 
of vB_EcoS_XY3 showed more than 90% identity to 
those of tunus. We also determined ANI values for the 
15 most closely related phages based on their genome 
sequences (Table S3). The ANI values for the compari-
son of vB_EcoS_XY3 with other phages ranged from 
95.68% to 98.41%, indicating an extremely close rela-
tionship between them. Pairwise genome sequence align-
ments of vB_EcoS_XY3 and 14 other phages were con-
ducted using BLASTn, and the results showed that they 
shared 97.14-98.52% identity. Phages with more than 95% 
genome sequence identity are considered members of the 
same species [23]. Therefore, vB_EcoS_XY3 should be 
included as a new member of the genus Warwickvirus, 
subfamily Tempevirinae. In a phylogenetic tree based on 
the large terminase subunit (ORF28), vB_EcoS_XY3 
was in the same branch with the phages tunus and tonn 
(Fig. 3A), demonstrating their close relationship. A phy-
logenetic tree based on the major capsid protein (ORF34) 
revealed that vB_EcoS_XY3 formed a distinct clade with 
other members of the genus Warwickvirus, and it was also 
distant from phages of the genus Hanrivervirus (Fig. 3B). 
They all belong to subfamily Tempevirinae.

In the vB_EcoS_XY3 genome, markers of temperate 
bacteriophages, such as genes encoding integrase, recom-
binase, repressor, or excisionase were not identified [24]. 
No antibiotic resistance genes were found in vB_EcoS_
XY3 [25]. Strictly virulent phages are preferred for phage 
therapy [26]. This study provides a promising candidate 
for phage cocktail therapy in the future.

Fig. 1   Plaque morphology (A) 
and virion morphology (B) of 
phage vB_EcoS_XY3

A B

50 nm10 mm

Author's personal copy



	 P. Fu et al.

1 3

Nucleotide sequence accession number

The GenBank accession number for phage vB_EcoS_XY3 
is MN781674.
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